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ABSTRACT

We provide sufficient conditions under which two random vectors could

be stochastically compared using the standard construction. These conditons

are weaker than those discussed by Arjas and Lehtonen (1978) and Veinott

(1965). Using these conditions we present extensions of (i) a result of

Block, Bueno, Savits and Shaked (1984) concerning the stochastic mono-

tonicity of independent and identically distributed random variables condi-

tioned on their partial order statistics, and (ii) a theorem of Efron (1965)

regarding an increasing property of Polya frequency functions. Applica-

tions of these extensions are also pointed out.

Key words: Random vectors, stochastic ordering, negative dependence,

Polya frequency function, component cannibalization.
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1. INTRODUCTION
II.

Let X and Y be two real valued random variables with survival functions

F and r; respectively. Then X is said to be stochastically larger than Y if:

(1.) P(t) k (5(t) t & R
*~t.

and is written X a-st Y [When equality holds in (1.1) for all values of t west |t

write X = Y. That is, they are equal in law]. Once F and G are given it

is usually easy to verify (1.1). The natural extension of (1.1) for finite

or infinite dimensional random vectors is as follows [e.g. Kamae, Krengel

and O'Brien (1977)]: Let X = (X X ") and Y = (YIY 2 ,"") be two
1' 2'..

n-component random vectors [n k 1 or n = o1 with survival functions F and

G respectively. Then X is said to be stochastically larger than Y if

(1.2) P{X ; A} k: P{Y A} for every increasing set A E Rn

and is written X > Y [When equality holds in (1.2) for all increasing sets~st
A & Rn we write X st Y1 In this paper 'increasing' stands for 'nonde-

creasing' and 'decreasing' for 'nonincreasing'. Unfortunately, even with F

and G explicitly specified it is usually not very easy to verify (1.2).

However, in light of
I

Lemma 1.1: X > Y if and only if there exist two random vectors X~st _

and Y defined on a common probability space such that P{_ > Y} 1

and X X andY 

U]

2..............,
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[e.g. Kamae, Krengel and O'Brien (1977)], effort has been made to stochas-

tically compare random vectors by constructing them on a common probability

space. In this respect three alternative constructions have been used.

They are (i) standard construction [e.g. Arjas and Lehtonen (1978)], (ii)

non-homogeneous Poisson process (NHPP) construction [e.g. Shaked and

Shanthikumar (1984)], and (iii) total hazard construction [e.g. Norros

(1984), Shaked and Shanthikumar (1985)]. Since we will be using the

standard construction we will describe it here. Let

F(t) = P{X 1 >t} , t e R

and

F(tlx_1 ) = P{Xj > tIX1 = xl, X 2 = X2 ,..,Xj. 1 =Xj-} ,

XlX2, ,Xjl, t R; j 2 2

Note that the dimension of the vector x.-1 will vary depending on where it
is used. In FI.(,.l1) , x_ 1 will represent (XlX2,x.. We will follow

this convention throughout this paper. Define and Gjo IjI) similarly.

Standard Construction: Let I{H} be the inverse function of a survival

function H [that is, I{H}(u) - inf{t e R: H(t) > u}, u & (0,1)] and

U = (U 1 ,U 2 ,...) be an n-vector with independent components uni-

formly distributed in (0,1). Construct X = (X 1 ,X 2 ,...) such that
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X= I{l(U1

and given X 1 = Xl, X2 = X2 ,.. 1  x. 1  ,

x = I{F(-Ix. 1)) (Uj, j - 2

Then one has [e.g. Arjas and Lehtonen (1978)].

Lemma 1.2: Let X be the values obtained through the standard construc-

tion.
Then X s_

Using the standard construction, Lemma 1.1 and 1.2, Arjas and Lehtonen

(1978) [also see Veinott (1965)] have obtained sufficient condition on F and

5 that satisfy (1.2). Specifically they have

Lemma 1.3: Suppose

1 (t) l(t) , t e R

(1.3) and
F (tlx j.1 )  G ( (tlyj_l) t R

,-"tl, ./ G ( i =1,2 .,j-1" j > 2

Then

* (1.4) _-st '-

One may easily verify that if X and Y are constructed using a common

U for both in the standard construction, X _ Y. Conditions different from

. (1.3) that imply (1.4) have been obtained using the NHPP construction [see

*Shaked and Shanthikumar (1984)] and total hazard construction [see Norros

d- - . , . : . .... -.- ... ..... .. ... . ' . . .. .- .. ) . . , . . .. - .. .". . . . . . .. - . . . - .
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(1984), Shaked and Shanthikumar (1985)]. In this paper we provide con-

ditions weaker than (1.3) that imply (1.4) and prove it using the standard

construction [see Section 2]. Using these results we obtain extensions of

(i) a result of Block, Beuno, Savits and Shaked (1984) concening the sto-

chastic monotonicity of independent and identically distributed [i.i.d]

random variables conditioned on their partial order statistics, and (ii) a

theorem of Efron (1965) regarding an increasing property of Polya fre-

quency functions in Sections 3 and 4, respectively. Finally in Section 5 we

establish the negative association of i.i.d random variables conditioned on

the partial order statistics and point out a sample application for results in

Section 3.

The following preliminaries will be required in Sections 3,4, and 5.

Definition 1.1: A random variable Z or its density function h is said to

be Polya frequency function of order two [or log-concave and written

PF 2] if h(s+x)/h(u+x) is decreasing in x e R for all s > u [Karlin

(1965)].

The following closure property of PF 2 densities will be needed later.

Lemma 1.5: A convolution of two PF2 densities is PF 2 .

Definition 1.2: Two random variables X and Y with density functions f and

g are said to be ordered in the sense of likelihood ratio [and written

X _ Y 1 if f(t)/g(t) is increasing in t e R [Karlin (1965)].

Lemma 1.6: Suppose X _ Y . Then X _ Y .
P.r st

Definition 1.3: A random vector T = (T 1 , T 2 1 ... , Tn) is said to be nega-

tively dependent through stochastic ordering [NDS] if

(T1,...,Ti_ IT i+I .... T n)l T i = t} stochastically decreases in t for

all values of i = 1,2,...,n.

Block, Savits and Shaked (1985) then show
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Lemma 1.7: If T is NDS then

nP{T 1 > tl,...,T n >nn <- P{T i > ti)

i=1

and

n
P{T 1 =< t I ... .,T n 5 t } n 1 P{T < d

2. CONDITIONS FOR STOCHASTIC ORDERING OF RANDOM VECTORS

In this section we provide conditons weaker than (1.3) that imply

(1.4) and prove it using the standard construction. For a given pair of

survival functions F and G define

al(t) = I{ 1 }(G5I(t)), t e R and

Ofj(yijlt) = I f j(. ljot.-(Yj-1 ))}(d (tlyj.1)),

Yl, Y2,-..,Yj-lft & R ; j =>! 2 ,

where a .(y 1j 1 ) and y will have different number of components depending

on where it is used. u.l(yl ) in Ij(.la_jl(y_j)) is (a11),22...,O_

i in ai(yi) is (Y1  Y2,... yi) and Y-j-1 in j(yj-lt) is (yly 2 ,...,Yjl).

Then

Theorem 2.1: Suppose

F l(t) _-> Gl(t) , t R

(2.1) and

I~j~l -jl(Y--1))> Gj(tlyj-1'Y'"j1 t  R

Then X >s Y

Proof: Constructing two random vectors X and Y according to the standard

construction with a common U one sees that

(2.2) X. = a.(YI, Y2.' .'Y.), J > 1.

With Condition (2.1) one can easily verify that

P . ,
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So.

(2.3)
Of l) > , Yl Y2' '''Y 1

' teR; j > 2 .

From (2.2) and (2.3) one sees that X > Y and the result now follows

from Lemmas 1.1 and 1.2.

Remark 2.1: From (2.3) it is immediately clear that (1.3) implies (2.1).

The popularity of using Lemma 1.3 for stochastic comparison of random

vectors is its relative easiness to verify (1.3). As we will see in

Section 3 there are interesting examples which satisfy (2.1) but do not

satisfy (1.3). In such an example we will also see that it is not hard

to verify (2.1).

In some applications it is possible to identify stronger conditions on F and

G that imply (2.1). Such a condition is given in [see Remarks 2.2 and

2.3]:

Theorem 2.2: Suppose there exist a set of non-negative functions

{blb 2,...} such that

Fi1(t) 2> CGl t) 2> il(t+bl) t &R

(2.4) and Fj(tlx_ ) G G(tly_.) >  Fj(t +b(Xj_,yj_l)lXj_l),

for t s R, yl + b, > x yl yi + bi(xi-l-i-1 ) >

xi > yi, i = 1,2,...,j-1; j = 2,

where b is a constant and b. (xi, ) = bi(xlx 2 .. ,i.

y. 1 ), i = 2,3,... Then X > Y.

.'' - ,-. ." . ,- i ,.
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al(t) > t, t & R. Therefore F 2 (tlx1 ) G2 (tly 1) > G2 (t + b2 (XlYl)lXl),

t s R, Y, + b, >  24 yl implies

(2.5) F2 (tlal(yl)) >y G2 (tly 1 ) F F2 (t + b2 (al(yl),y 1)la 1(yl)),y 1 ,t&R.

and hence

(2.6) t + b2 (lct1(y),y 1) a2 (Ylt) > t, yl, t s R

Now as an induction hypothesis assume that

(2.7) .(tla. )) ) ,y)ci(.)(2.7)i- I~~l~ _l( i )) > ( (tlyi_l) > Ii(t+bi(ai_l (Yi.1),Yi-l)lai-l(Yi-l))

and hence
(2.8) t + bi. i(u ~ ~ )Yil -_a(Y~ilt >t l 2 ' Y- ' tsR

for all i =2,3,.. .,J-1. Note that (2.7) and (2.8) are valid for i = 2

[see (2.5) and (2.6)]. Now from (2.8) with i = j-1 and (2.4) one

sees that (2.7) is satisfied with i = j. However, (2.7) with i =j

implies (2.8) with i = j. Then by the induction hypothesis one sees

that (2.7) and (2.8) are true for all values of i = 2,3,. .. ,n. That is

Condition (2.1) of Theorem 2.1 is satisfied. The result now follows by

Theorem 2.1.

Remark 2.2: As we have noted in the proof of Theorem 2.2, Condition

(2.4) implies (2.1).

Remark 2.3: If we set b. = =, j > 1, Condition (2.4) reduces to Condition

(1.3). We will use the above result to obtain an extension of a Theorem of

Efron (1965).
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3. STOCHASTIC MONOTONICITY OF i.i.d RANDOM VARIABLES

CONDITIONED ON ORDER STATISTICS

Let Z. = (Z 1 ,Z 2 , ...,Zi) be a random vector of j i.i.d random variables

with survival function H and density h. Now let

N.(t) = #{i:Z. > t, i = 1,2,...,j).J
(N(t) is assumed to be right continuous with left hand limits. For a given

1,z2 , (z1 dz k = zrk 2 = .. 12 and m : (m 1 , m2 ,...

- such thatz 1 <z 2 < <zr and 0 er < mr < < m e < m <1 <m j de-.... ..... . 2 =  I: = 1 !e

fine Z., zZJ,{ N(z i) = £I, Nj(zi'):mi i = 1,2,...,r}

Let T Z Then simple calculation shows that

(3.1) P{T 1 > t} = {mi + ( - mi)H (t)}

where

H , z.it1  < t < z.,Z-' "I- H(z ) -H(z.) i

i= 1,2,...,r + 1

and z= -0, Zr+1 = + O. Since H .(t) increases as z. and zi increasesz, i

for zi_ 1 < t < zi, it is not hard to see

Lemma 3.1: P{T 1 > t} given by (3.1) is increasing in (z, P., m).

11
=-Now consider P{T 2 > tiT 1  t tl} A routine calculation shows that -

(3.2) P{T 2  > tiT 1  = = I { i' + (Pi'_I - m ) i z,i(t)},

zi. 1  < t < zi, i = 1,2,...,r + 1,
I-i

| -p

~**~~%**t*** o
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where
:= .- I

I I (zi< t I )

(3.3) and
m I M tm . - II = 1 , r .i I (z,<t )  ' '",

Define T' = (T', T',T') = Z Then comparing the rightDefine 2_ =- (T1 T-,..1 I  1 Z,2_I'm,.

hand side of (3.2) and that of (3.1) one sees that P{T 2 > tT 1 = tl} =

P{T' > t}, t e R. Now considerng P{T 3 > tlT' = t2 } and continuing this

one can establish

Lemma 3.2: {(T 2 1 T3 1 ',T 1 )l T 1 = tl} 1 Zj.,,z2ImI where 'and m'

are given in (3.3).

Remark 3.1: Note that the event {N.(zi) = I N.(zi-) = Mi i = 1,2,...,r}

relays information on the order statistics z[ 1 ] _ Z[ 2 ] <..<Z[j of Z..

For example consider the following event [1 6 kI < k2 < .<k r

(3.4) A {N.(z,) = j " ki, N.(z.') = j -k + 1, i - 1,2,...,r}, ,1

for some 1 < r <_ j.

Then clearly

A -{Z[kl] = Z1 Zik] = z2,...,Z[krI = Zr.,
I.

Block, Bueno, Savits and Shaked (1984) consider the random vector Z.-J

conditioned on event A as given in (3.4) and study its stochastic

monotonicity and NDS properties. Alternatively consider

(3.5) A = INj(z i ) = j-ki+1 = Nj(zi-), i = 1,2,...,r).

Then

A {Z[ki] < z < Z[k] i =1,2,...,r}, where we set Z[0 ] =

Now we present the main theorem of this section.

*1

-_ . . ....- ... ... ., - ..-.... ... ... .. .-.- - . .. ... ..-. -. . .-. -... > .- ,'. . .. -, -.. .- .- .- .- - ,. ; .4,'
r..: ::,- - . . . .. .. .. . .- .-. - -, -.. .. - . - -- - . -. . . .. -' - ,- , , , , -,., -.- -".- ,. . . - . ,



10
!p

Theorem 3.3: Let Z n,z,,m be as defined in this section with j = n. Then

Z n z, ,m is stochastically increasing in (z, , m)[that is (w,u,v) =

(c,a,b) => Zn,w,u,v st z-n,c,a,b_]"

Proof: Let F and G be the survival functions of X = Z and

S-n,c,a,b, respectively for some (w,u,v)=> (c,a,b). From Lemma

3.1 one has

(3.6) I(t) >  (t), t R

Now consider a (t) as defined in Section 2. From (3.6) it is clear

that a1 (t) > t. A careful study of F1 and G1 [given in (3.1) with

appropriate values for z, 9 and m] will show that for fixed i, c. and

w.

If u. -ai then {t:t>c} W al(t) > wi} ,

If ui > ai then {t:t > ci C {t:a 1(t) > w} ,

(3.7)

if v i  : b. then {t:t c} {t:a (t) w}, and

if v. > b. then t:t > c.} C t:a(t) wi}.

Therefore if we set

U. I (w.< aOy)) ; v - I(Y (w. < a (y,))
I 1

and

a a (c < y ) i (c Y '

from (3.7) one sees that for all yl & R, (u', v') _ (a', b'). There-

fore from Lemmas 3.1 and 3.2 one has

• ,.'. -. -,.-,:..:..:-:-.;,. .'.Q:,'".."''''"-""",.:-''r;"'' ;t ... '; ; r : ': ; ;. % 4;% 4 N : : . 1*



{x2,x3,. ..,XnlX1 = 1(Yl)} s; Z n-l,w,u_,v'

[ Y 2 • ... y n 1 1) l n-nl ,£ ,a ,, , '

and

F 2(tiot 1(yj )) G- G2(tlYl) 'Yl' t R. .

Therefore a continued application of the above analysis will result in

( . )) (tlyj_) , yly 2 ,...yj. I t & R ; j - 2

That is (1.) and (G.) satisfy Condition (2.1) of Theorem 2.1 and there-

foreX >t "'

Now combining (3.4) with the above result one obtains
Corollary 3.4: For some 1 < r 5 n, z < z < ... Zr and 1 5 k < k <...

Z1  Z2  r1 2 .

< k r n let T = {ZnlZ[kl] = zl, Z[k] = z2 ,.. .,Z [k = r}. Then T >kr]

is (i) stochastically increasing in z and (ii) stochastically decreasing in
k. :

Block, Beuno, Savits and Shaked (1984) proved (i) [see the Corollary 9.

to Lemma 4.2 there]. They also used this result to show some negative

dependence properties of T. In Section 5 we will show the negative

dependence property of Z nz,. Now combining (3.5) with Theorem-n, z, ,r

3.3 one obtains [as a special case].

J. - .. 4 ~ **A~~*~ ...
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Corollary 3.5: For some 1 5 k 6 n and z & R let T {ZnlZ[k.1] < z <

Z[k]}. Then T is stochastically increasing in z and is decreasing in k.

We will use the above result to provide a decision rule for selecting

components during cannibalization [see Section 5].

4. INCREASING PROPERTY OF POLYA FREQUENCY FUNCTIONS

Let Z = (Z 1 , Z2 1 ... /Zn) be n mutually independent PF2 random vari-

ables with density functions (hl, h.. .,h n). Let s  {ZIZ 1s} , where

1' = (1,1,...,1) is of appropriate dimension.

Theorem 4.1: For some s_ u, let F and G be the survival functions of Zs

and Zu respectively. Then (i) F and G satisfy Condition (2.4) of Theorem 2.2,- :u
and (ii) Z >s

Proof: From Theorem 2.2 and (i), (ii) follows. So consider (i). Let qj be

the density function of the sum Z. + Z +.. + Zn . Then if (f.) and

(gj) are the densities of (Fj) and (Gj) respectively,

fl1tM q 2(s-t) ql(u).-

gl(t) q2 (u-t) ql(s)

Note that s-t u-t and since q. is PF2 [Lemma 1.5], q2 (s-t)/q 2 (u-t) and

hence fl(t)/gl(t) increases in t. That is X> Y1 and from Lemma 1.6, one .

has

F (t) G , t & R . Now consider

f 1 (t +(s-u)) h1 (t + (s-u)) ql(u) )
g1 (t) h(t) q(s)

S. .
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Since h I is PF 2 , hl(t-(s-u))/hl(t) and hence fl(t-(s-u))/gl(t) decreases in

t. Therefore as before Y> X1 (S-U) and

(4.1) Ilt) > (t) > ~(t + bl1),

where

b1 = s-u

Now let

j-1
bj(x 1 j-l,Yj.1) s-u- I (x i - yi) , j = 2,3,...,n.

i=1

From (4.1) one has yl + b 1 e1 (y1) k Yl. Hence with restriction y+ b,

x yl one sees that

(4.2) b 2 (xlY 1 ) _- 0

Now as an induction hypothesis assume that

(Al) b (Xl. 0 1 and

(A2) Condition (2.4) holds for all values of j up to 1-1.

Note that (Al) and (A2) is true for 9 2 [see (4.1) and (4.2)]. Consider

f£(tlX£'l) q +l(s-t- X xi) (u- I1

£--1 )-1

g (tly).) q -+(u-t- I yd q (s- .7. x.
£- u i=1 ., ~ i=1 /

Since by Assumption (Al), b (xl,.l) > 0, one has

s-t- I x. i u - t - yi y
i=L i=1

a,

S'S
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Therefore as before

[X{elX = X1 '... X£- = x- 1 -- r '{£ fY1' = yl,...,Yk-I = Y£-1 }

Yi + bi (x i- Yi-1 )  xi YiI i = 1,2,...,..-1, and

Now consider

f (t + b (x2 'ly'£w)lx 2 ') h (t+b (x.l 1 Y_)) qe(u- I Yi )

g 2 (ty_ 1 ) h£(t) 5 q =(s-i1 )

Since by Assumption (Al) b e(x 1 0, the log concavity of h

implies

(4.3) (tlx£ 1 ) > (5(tlyjj.) > e(t + bp(x. 1 ,y_.)lX_ 1)

for all Y, + b, =  x, >yl, yi + bi(xi-l i1 ) xi 2 yi , i - 1,2,..., -1.

With (4.3) one has

(4.4) y2 + b (x£l,£.) (

Therefore with the restriction y1 + bl Xl y , yi + bi(xi-1 Yi-1 )

xi ;> yi, i = 1,2, ... ,.-1 one obtains

(4.5) b (X = - - 0.2+1 _Q, Y-) b 2 1 , ) (x2- j yi)

From (4.3) and (4.5) and the induction hypothesis one sees that

F and d satisfy Condition (2.4).

Remark 4.1: Efron (1965) using an alternative proof established (ii)

of Theorem 4.1. The discrete analogue of this result has proved

to be very useful in the analysis of queueing networks [see

Shanthikumar and Yao (1985a), (1985b)]. We will next provide an

extension [the main result of this section] of Theorem 4.1. This

extension has useful applications in the analysis of queueing

network and these applications will be discussed elsewhere.

5.......
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A A A A, A A A A

Theorem 4.2: Let X = (X1, x ....,x ) and Y = (Y1, Y2'''" Yn)

be two independent random vectors of mutually independent elements

with PF2 densities ( 1' f2l''"fn and (g,, g2 ,"'.,gn) respectively.

For some s and u define

X = {XIX 1 = s} and Y = {YIY 1 = u}

Suppose for some 0 < a. < 0

X i ! -! a i  , i = 1 , 2 , . . . , n .- .,

n j
Then for s- u + a. s .

i Ist -

Proof: Suppose we can show that .

(4.6) [X11 Y2' YnlX1 + Y2 +  +Yn = v} >

2 A.{YI'Y2 ' I..YnlY1 + Y2 +  "" +  Y n u) v u+a

Then applying (4.6) with X2 replacing Y2 one sees that
A

tX1 , X 2 , Y3 ,..YnlXI 
A

+Y 2 +Y 3 + + Yn .)

AA

>st{X11 Y2 Y3'I1 ... u

+ Y2 +  3 + " + Y n vw > v + a 2

'1 
n

Y 2 3 Y2 Y3 n U),.

w >v + a=2

_u + aI1 + a2 .

Continuing this way one can obtain the desired result. Hence all we need

is to establish (4.6) for v = u + a1  So without loss of generality let the

left hand side of (4.6) be X and the right hand side be Y, with survival

= functions I and (,and densities f and g, respectively. Then,
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f 1 M f1  t g, q 2 ( U)

g1 (t) g+ Mut) 1 q2 (v)

n ".

whereq 2 is the PF2 density of I Y. and * stands for convolution.
i=2

As before one sees that f 1 (t)/gl(t) is increasing in t arhd hence

F1(t) -G G1 (t) , t R 

Consider

f (t + a)- fl(t + a) g, * q(u)

g 1 (t) g 1 (t) f1 * 2 ( \ )

The above expression is decreasing in t and hence

F l ( t ) => CGl ( t ) a- F I (t + a1 )  .

So F and G1 satisfy (2.4) with b I  a >0. Now note that

11~
[X. {Y2 21''' nY .. Y3 n "'" 1 n 1)

'21 '31 .. 'n' '2 + Y +..+ Y
"" y~V-X "

r.v - Xl. 1

and similarly

{Y 21 Y31''' Y n lY1 = Yl }

[Y 21 Y 3''''.1Y n lY2 + Y3 + "" + Yn .

u-y 1 _yU-y I

Then for yl + b x Y v - x _- u-y 1 , and therefore from Theorem 4.1

one sees that I. and G., j 2 also satisfy Condition (2.4) of Theorem 2.2.

Hence X > st Y
- ~it

Remark 4.2: Obviously when Xi  Yi, one can set a. 0, i = 1,2,...,n.

Then Theorem 4.2 specializes to Theorem 4.1. Now suppose instead of

conditioning X1 = s and Y 1 = u, we condition them to be X 1 it Zl

and Y_ 1 it Z where Z and Z are two random variables with distri-

. 1 2
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butions H1 and H2. respectively. That is,

PX e A H f P{X s AIY 1 = s) dH 1 (s) and

P{Y A} f P{Y e A I Y 1 = u} dH2 (u) ,A Rn

n n
Suppose Z 1 2!>st Z2 + 7 a. Then defining Z 1 Z1 - I a- withi=1 1i=1

distribution function H' one obtains1

P{X A) = f (A, u) dH (u) and

P{Y s A) f "'(Au)dH 2 (u) ' A e Rn

" u 2:'
,_"I

n
where cj (A,u) : P{X s AIX 1 = u + 7 ai)i-1 -

=A,u) P{Y e AIY 1 = u).

From Theorem 4.2 one has 4I(A,u) 2!f (Au) for all increasing upper sets

A, and from Theorem 4.1 one has V';(A,u) and 1
1 (A,u) increasing in u.

n
Then it is easily seen that since Z 1 >s Z2 + 7 a. [that is H (u) < H2

i=1

one has PfX s A) > PfY & A) for all increasing sets A & R n  Therefore X

st Y.

Using analysis similar to that in this section it can be shown that all

the results presented in this section holds true for discrete random vari-

ables. A special case of the above extension has been used by Shanthi-

kumar and Yao (1985b) in the analysis of closed queueing networks.

," 5. APPLICATIONS

* We will first apply Theorem 3.3 to show that Z defined in
,n, z, , m

Section 3 satisfies the NDS property of Block, Savits and Shaked (1985)

[see Definition 1.5].



18

Theorem 5.1: T Z satisfy the NDS propetry.

Proof: From Lemma 3.2 it can be seen that

(5.1) {(T 1 , T 2 1 " .,Ti 1 , Ti+, jTn )IT i = s} Z nlzsm s where

S(z < and m i m i - I i = 1,2,... ,n. Therefore

s > t = (eS, m) _ (9 , mt). Then from (5.1) and Theorem 3.3 one

has the NDS property for T.

Next we point out an application for Corollary 3.5 in component cannibali-

zation. Consider a collection of heat sources each cooled by its own cooling

system consisting of a set of n identical pumps and a circulation system

[composed of radiators, pipes etc.]. The operation of the heat source is

continued unless either the heat source or the cooling system fails. A

cooling system failure may occur either because all the n pumps have failed

or because the circulation system has failed. The circulation .ystem fails

mainly due to the structural damage caused by fewer number of pumps

working. One may safely assume that the damage accumulation rate increases

as the number of working pumps decreases.

After t time units of operation all the cooling systems are replaced by

spare cooling systems. This t time units may represent the 'high reliable

operatng time' for the cooling system. These pulled out cooling systems

may however be used elsewhere for less critical use. Since some of the

pumps from these pulled out cooling systems may have already failed one

could pool all such cooling systems and assemble fewer number of systems

but all with n operating pumps. In such a case one has to choose the best -

circulation systems for these re-assembly. Since it is not economically

feasible to test the circulation system for its structural damage one may use

the following result to choose the desired circulation systems.

Let C. be the circulation system belonging to the i-th cooling system.

I~
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Assume that we have also observed that k. of the n pumps of the i-th

cooling system were not operative at time t. Then if D. is the damage

accumulated in Ci, one has from Corollary 3.5

(5.1) D <st I
=n() !st n(2) st .... n(m)

where in is a permutation of {1,2,...,m} such that

(5.2) k (1) < k (2) ... <- k(m )

One may now use (5.1) and (5.2) to choose the stochastically better

circulation systems for re-assembly.
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